Operators, Operator Families, and Asymptotics II

Monday, January 14, 2019 (All day) to Thursday, January 17, 2019 (All day)

List of speakers: 

Giovanni S. Alberti (University of Genoa) 

Nadia Ansini (Sapienza University of Rome)

Anne-Sophie Bonnet-BenDhia (CNRS-INRIA-ENSTA)

Sabine Bögli (Imperial College London)

Mikhail Cherdantsev (Cardiff University)

Patrick Dondl (University of Freiburg)

Davit Harutyunyan (University of California, Santa Barbara)

Peter Hornung (Technische Universität Dresden)

Dirk Hundertmark (Karlsruhe University of Technology)

Matthias Langer (University of Strathclyde)

Monica Musso (University of Bath)

Grigory Panassenko (Institut Camille Jordan, University of Lyon)

Rafael del Río (IIMAS-UNAM)

Nadia Sidorova (University College London)

Luis Silva (IIMAS-UNAM)

Petr Siegl (Queen's University Belfast)

Stephen Shipman (Louisiana State University)

Igor Velčić (University of Zagreb)

 

 

For more information, including the details of talks, please visit http://people.bath.ac.uk/kc525/

 

Places are limited. Please register as soon as possible or by 16 December 2018 at 

https://store.bath.ac.uk/conferences-and-events/accommodation-and-hospitality-services/conferences/operators-operator-families-and-asymptotics-ii

You may also wish to follow the link to register at http://people.bath.ac.uk/kc525/

 

The first 8 UK-based PhD students to register will get the registration fee refunded and the following reimbursed:

--- Up to £35 per night, up to 4 nights, accommodation costs;

--- £60 towards travel.

The conference is supported by London Mathematical Society, Newton Fund, EPSRC, and Bath Institute for Mathematical Innovation.

University of Bath
Department of Mathematical Sciences
Bath
BA2 7AY
United Kingdom
Agenda: 

The conference, which is the second in a series taking place every 3 years, will make an overview of the state of the art in a rapidly developing area of analysis concerned with application of the techniques of operator theory to the asymptotic study of parameter-dependent differential equations and boundary-value problems. 

 

From the physical point of view, the parameter normally represents a length-scale in the situation modelled by the equation: for example, a wavelength in wave propagation, or the inhomogeneity size in the theory of periodic composites. The theory of linear operators in a Hilbert space (symmetric, self-adjoint, dissipative, non-selfadjoint), which prior to the first conference in the series had enjoyed several decades of outstanding progress, had been, for much of its time, restricted to abstract analysis of general classes of operators, accompanied by ad-hoc examples and applications to perturbations of the Laplace operator. 

 

The first meeting in 2016 contributed to recent developments concerning the above link, in particular clarifying the role of operator-based techniques in the development of mathematical foundations for metamaterials. The second meeting will outline the next steps in this process, generating new research directions in the asymptotic study of operator families, where the abstract and applied streams are aligned with each other. The above subject area is currently in the state of maturing for the next breakthrough in the applications of mathematics to the real-world technologies that depend on understanding the behaviour of solutions to parameter-dependent boundary-value problems of mathematical physics. One notable example of this interaction is found in the development of techniques for manufacturing composite materials that exhibit negative refraction ("metamaterials"): analysis of operators and their families offers a cost-effective way to explore possible ways to obtain such composites, and vice versa, the practical needs give a massive stimulus to further development of this classical area of analysis.

Categorisation