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The factorial number system

Each n ∈ Z≥0 has a unique representation

n =
∞∑
i=1

cii! with ci ∈ Z,

0 ≤ ci ≤ i, #{i : ci 6= 0} <∞.

In factorial notation:

n = (. . . c3c2c1)!.

Examples : 25 = (1001)!, 1001 = (121221)!.

Note: c1 ≡ n mod 2.
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Arithmetic

For any k, the k last digits of n+m depend only on the
k last digits of n and of m.

Likewise for n ·m.

Hence one can also define the sum and the product of
any two infinite sequences (. . . c3c2c1)! with each ci ∈ Z,
0 ≤ ci ≤ i.
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Profinite numbers

Example: (. . . 4321)! + (. . . 0001)! = (. . . 0000)! = 0,
so (. . . 4321)! = −1.

The set of such sequences (. . . c3c2c1)! is a ring with these
operations, the ring of profinite integers.

Notation: Ẑ.

Profinite number theory Hendrik Lenstra



A formal definition

Better:

Ẑ = {(an)∞n=1 ∈
∞∏
n=1

(Z/nZ) : n|m⇒ am ≡ an mod n}.

This is a subring of
∏∞

n=1(Z/nZ).

Its unit group Ẑ∗ is a subgroup of
∏∞

n=1(Z/nZ)∗.

Equivalent definition:

Ẑ = End(Q/Z),

Ẑ∗ = Aut(Q/Z).
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Three exercises

Exercise 1. The ring homomorphism Z→ Ẑ is injective
but not surjective.

Exercise 2: Ẑ is uncountable.

Exercise 3. For each m ∈ Z>0, the maps Ẑ→ Ẑ, a 7→ ma
and Ẑ→ Z/mZ, a = (an)∞n=1 7→ am fit into a short exact
sequence

0→ Ẑ→ Ẑ→ Z/mZ→ 0.
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Profinite rationals

Define

Q̂ = {(an)∞n=1 ∈
∞∏
n=1

(Q/nZ) : n|m⇒ am ≡ an mod nZ}.

Exercise 4. The additive group Q̂ has exactly one ring
multiplication extending the ring multiplication on Ẑ.

Exercise 5. The ring Q̂ is commutative, it has Q and Ẑ
as subrings, and

Q̂ = Q + Ẑ = Q · Ẑ ∼= Q⊗Z Ẑ

(as rings).
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Topological structure

If each Z/nZ has the discrete topology and
∏∞

n=1(Z/nZ)

the product topology, then Ẑ is closed in
∏∞

n=1(Z/nZ).

It is a compact Hausdorff totally disconnected topological
ring. A neighborhood base of 0 is B = {mẐ : m ∈ Z>0}.

With the same neighborhood base, Q̂ is also a
topological ring. It is locally compact, Hausdorff, and
totally disconnected.
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Amusing isomorphisms

We have Ẑ ⊂ A =
∏∞

n=1(Z/nZ).

Exercise 7: A/Ẑ ∼= A as additive topological groups.

Exercise 8: A ∼= A× Ẑ as groups but not as topological
groups.
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Profinite groups

In infinite Galois theory, the Galois groups that one
encounters are profinite groups.

A profinite group is a topological group that is
isomorphic to a closed subgroup of a product of finite
discrete groups.

Equivalent definition: it is a compact Hausdorff totally
disconnected topological group.

Examples : the additive group of Ẑ and its unit group Ẑ∗

are profinite groups.
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Ẑ as the analogue of Z

Familiar fact. For each group G and each γ ∈ G there is
a unique group homomorphism Z→ G with 1 7→ γ,
namely n 7→ γn.

Analogue for Ẑ. For each profinite group G and each
γ ∈ G there is a unique group homomorphism Ẑ→ G
with 1 7→ γ, and it is continuous. Notation: a 7→ γa.
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Examples of infinite Galois groups

For a field k, denote by k̄ an algebraic closure.

Example 1: with p prime and Fp = Z/pZ one has

Ẑ ∼= Gal(F̄p/Fp), a 7→ Froba,

where Frob(α) = αp for all α ∈ F̄p.

Example 2: with

µ = {roots of unity in Q̄∗} ∼= Q/Z

one has
Gal(Q(µ)/Q) ∼= Autµ ∼= Ẑ∗

as topological groups.
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Radical Galois groups

Example 3. For r ∈ Q, r /∈ {−1, 0, 1}, put
∞
√
r = {α ∈ Q̄ : ∃n ∈ Z>0 : αn = r}.

Theorem (Abtien Javanpeykar). Let G be a profinite
group. Then there exists r ∈ Q\{−1, 0, 1} with
G ∼= Gal(Q(∞

√
r)/Q) (as topological groups) if and only if

there is a non-split exact sequence

0→ Ẑ
ι−→ G

π−→ Ẑ∗ → 1

of profinite groups such that

∀a ∈ Ẑ, γ ∈ G : γ · ι(a) · γ−1 = ι(π(γ) · a).
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Diophantine equations

Given f1, . . . , fk ∈ Z[X1, . . . , Xn], one wants to solve the
system f1(x) = . . . = fk(x) = 0 in x = (x1, . . . , xn) ∈ Zn.

Theorem. (a) There is a solution x ∈ Zn ⇒ for each
m ∈ Z>0 there is a solution modulo m ⇔ there is a
solution x ∈ Ẑn.

(b) It is decidable whether a given system has a
solution x ∈ Ẑn.
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p-adic numbers

Let p be prime. The ring of p-adic integers is

Zp = {(bi)∞i=0 ∈
∞∏
i=0

(Z/piZ) : i ≤ j ⇒ bj ≡ bi mod pi}.

It is a compact Hausdorff totally disconnected
topological ring.

Zp is a principal ideal domain, with pZp as its only
non-zero prime ideal.

All ideals of Zp are closed, and of the form phZp with
h ∈ Z≥0 ∪ {∞}, where p∞Zp = {0}.
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The Chinese remainder theorem

For n =
∏

p prime p
i(p) one has

Z/nZ ∼=
∏

p prime

(Z/pi(p)Z) (as rings).

In the limit:

Ẑ ∼=
∏

p prime

Zp (as topological rings).
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Profinite number theory

The isomorphism Ẑ ∼=
∏

p Zp reduces most questions that

one may ask about Ẑ to similar questions about the
much better behaved rings Zp.

Profinite number theory studies the exceptions.
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Ideals of Ẑ

For an ideal a ⊂ Ẑ =
∏

p Zp, one has:

a is closed ⇔ a is finitely generated ⇔ a is principal

⇔ a =
∏

p ap where each ap ⊂ Zp an ideal.

The set of closed ideals of Ẑ is in bijection with the set
{
∏

p p
h(p) : h(p) ∈ Z≥0 ∪ {∞}} of Steinitz numbers.

Most ideals of Ẑ are not closed.
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The spectrum of Ẑ

The spectrum SpecR of a commutative ring R is its set
of prime ideals. Example: SpecZp = {{0}, pZp}.

One studies Spec Ẑ through the set of ultrafilters on
the set P of prime numbers.

For S ⊂ P , let eS ∈
∏

p∈P Zp = Ẑ have coordinate
0 at p ∈ S and 1 at p /∈ S.

There is a map Υ: Spec Ẑ→ {ultrafilters on P} defined
by

Υ(p) = {S ⊂ P : eS ∈ p}.
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The spectrum and ultrafilters

Example: If p = ker(Ẑ→ Zp or Fp) for some p ∈ P ,
then Υ(p) is principal: S ∈ Υ(p)⇔ p ∈ S.

Theorem. (a) p is closed in Ẑ⇔ Υ(p) is principal.
(b) Υ(p) = Υ(q)⇔ p ⊂ q or q ⊂ p.
(c) The fibre Υ−1U = {p ∈ Spec Ẑ : Υ(p) = U}

over an ultrafilter U on P has size 2 if U is principal
and is infinite if U is free.

Question: how does the order type of the totally ordered
set Υ−1U vary as U ranges over all ultrafilters on P?
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The logarithm

u ∈ R>0 ⇒ log u = ( d
dx
ux)x=0 = limε→0

uε−1
ε

.

Analogously, define log : Ẑ∗ → Ẑ by

log u = lim
n→∞

un! − 1

n!
.

This is a well-defined continuous group homomorphism.

Its kernel is Ẑ∗tor, which is the closure of the set of
elements of finite order in Ẑ∗.

Its image is 2J = {2x : x ∈ J}, where J =
⋂
p pẐ is the

Jacobson radical of Ẑ.
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Structure of Ẑ∗

The logarithm fits in a commutative diagram

1 // Ẑ∗tor
//

o
��

Ẑ∗
log

// 2J // 0

1 (Ẑ/2J)∗oo Ẑ∗oo 1 + 2Joo

o

OO

1oo

of profinite groups, where the other horizontal maps are
the natural ones, the rows are exact, and the vertical
maps are isomorphisms.

Corollary: Ẑ∗ ∼= (Ẑ/2J)∗ × 2J (as topological groups).
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More on Ẑ∗

Less canonically, with A =
∏

n≥1(Z/nZ):

2J ∼= Ẑ,

(Ẑ/2J)∗ ∼= (Z/2Z)×
∏
p

(Z/(p− 1)Z) ∼= A,

Ẑ∗ ∼= A× Ẑ,

as topological groups, and

Ẑ∗ ∼= A

as groups.
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Power series expansions

The inverse isomorphisms

log : 1 + 2J
∼−→ 2J

exp: 2J
∼−→ 1 + 2J

are given by power series expansions

log(1− x) = −
∞∑
n=1

xn

n
, expx =

∞∑
n=0

xn

n!

that converge for all x ∈ 2J.

The logarithm is analytic on all of Ẑ∗ in a weaker sense.
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Two topologies on Q̂

Reminder : Q̂ is a topological ring, the set

B = {mẐ : m ∈ Z>0}
of Ẑ-ideals being a neighborhood base of 0.

The set of closed maximal ideals of Q̂ is a subbase for the
neighborhoods of 0 in a second ring topology on Q̂ that
we need. A neighborhood base for 0 in that topology is
given by the set

C = {Q ·
∞⋂
n=0

mnẐ : m ∈ Z>0},

which consists of Q̂-ideals.
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Analyticity

Let x0 ∈ D ⊂ Q̂. We call f : D → Q̂ analytic in x0 if
there is a sequence (an)∞n=0 ∈ Q̂∞ such that one has

f(x) =
∞∑
n=0

an · (x− x0)n

in the sense that

∀U ∈ C : ∃V ∈ B : ∀x ∈ (x0 + V ) ∩D : ∀W ∈ B :

∃N0 ∈ Z≥0 : ∀N ≥ N0 :
N∑
n=0

an · (x− x0)n ∈ f(x) +U +W.

To understand this formula, first omit all U ’s.
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Examples of analytic functions

The map log : Ẑ∗ → Ẑ ⊂ Q̂ is analytic in each x0 ∈ Ẑ∗,
with expansion

log x = log x0 −
∞∑
n=1

(x0 − x)n

n · xn0
.

For each u ∈ Ẑ∗, the map

Ẑ→ Ẑ∗ ⊂ Q̂, x 7→ ux

is analytic in each x0 ∈ Ẑ, with expansion

ux =
∞∑
n=0

(log u)n · ux0 · (x− x0)n

n!
.
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A Fibonacci example

Define F : Z≥0 → Z≥0 by

F (0) = 0, F (1) = 1, F (n+ 2) = F (n+ 1) + F (n).

Theorem. The function F has a unique continuous
extension Ẑ→ Ẑ, and it is analytic in each x0 ∈ Ẑ.

Notation: F .

For n ∈ Z, one has

F (n) = n⇔ n ∈ {0, 1, 5}.
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Fibonacci fixed points

One has #{x ∈ Ẑ : F (x) = x} = 11.

The only even fixed point of F is 0, and for each
a ∈ {1, 5}, b ∈ {−5,−1, 0, 1, 5} there is a unique fixed
point za,b with

za,b ≡ a mod
∞⋂
n=0

6nẐ, za,b ≡ b mod
∞⋂
n=0

5nẐ.

Examples : z1,1 = 1, z5,5 = 5.

The number z25,−5 is exceedingly close to 25 without
being equal to it.
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Explanation of the picture

(. . . c3c2c1)! =
∑

i≥1 cii! ∈ Ẑ is represented by∑
i≥1 ci/(i+ 1)! ∈ [0, 1].

In green: the graph of a 7→ a.
In blue: the graph of a 7→ −a.
In yellow: the graph of a 7→ a−1 − 1 (a ∈ Ẑ∗).
In orange/red/brown: the graph of a 7→ F (a).

Intersection of the latter graph with the diagonal:

{0} ∪ {za,b : a ∈ {1, 5}, b ∈ {−5,−1, 0, 1, 5}}.
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Larger cycles

I believe:

#{x ∈ Ẑ : F (F (x)) = x} = 21,

#{x ∈ Ẑ : F n(x) = x} <∞ for each n ∈ Z>0.

Question: does F have cycles of length greater than 2?
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Other linear recurrences

If E : Z≥0 → Z, t ∈ Z>0, d0, . . . , dt−1 ∈ Z satisfy

∀n ∈ Z≥0 : E(n+ t) =
t−1∑
i=0

di · E(n+ i),

d0 ∈ {1,−1},
then E has a unique continuous extension Ẑ→ Ẑ. It is
analytic in each x0 ∈ Ẑ.
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Finite cycles

Suppose also X t −
∑t−1

i=0 diX
i =

∏t
i=1(X − αi), where

α1, . . . , αt ∈ Q(
√

Q),

α24
j 6= α24

k (1 ≤ j < k ≤ t).

Tentative theorem. If n ∈ Z>0 is such that the set

Sn = {x ∈ Ẑ : En(x) = x}
is infinite, then Sn ∩ Z≥0 contains an infinite arithmetic
progression.

This would imply that {x ∈ Ẑ : F n(x) = x} is finite for
each n ∈ Z>0.
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Envoi

And that’s the end.
Now carp at me. I don’t intend
to justify this tale to you.
Why tell it? Well, I wanted to!

Alexander Pushkin
(translation: Ranjit Bolt)

Profinite number theory Hendrik Lenstra


