European Mathematical Society - e. delabaere
https://euro-math-soc.eu/author/e-delabaere
enThéories asymptotiques et équations de Painlevé
https://euro-math-soc.eu/review/th%C3%A9ories-asymptotiques-et-%C3%A9quations-de-painlev%C3%A9
<div class="field field-name-field-review-review field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item even"><div class="tex2jax"><p>The history of Painlevé differential equations is more than a century long. They are second order nonlinear partial differential equations characterized by the behaviour of the poles of their solutions. Painlevé divided them into six families (P I - P VI) in his classification result. After a quiet period, they have recently become very popular in connection with their applications to important problems in theoretical physics. In the book, there are 14 articles connected with the meeting on Painlevé equations organized in Angers in 2004. A lot of the contributions are devoted to P VI: P. Boalch describes the group of its symmetries and some special solutions; D. Guzzetti discusses its elliptic representations; a long paper by M. Inaba, K. Iwasaki and M.-H. Saito describes its dynamics; and RS-transformations for construction of its algebraic solutions are discussed in the paper by A. V. Kitaev. The paper by P. A. Clarkson is devoted to P II, P III and P IV, while another paper by P. A. Clarkson, N. Joshi and M. Mazzocco discusses the (natural) Lax pair for the modified KdV hierarchy and its relation to isomonodromic problems for P II. The Painlevé property for the Hénon-Heiles Hamiltonians is the topic of the paper by R. Conte, M. Musette and C. Verhoeven. The papers by K. Kajiwara, T. Masuda, M. Nuomi, Y. Ohta and Y. Yamada, and by A. Ramani, B. Grammaticos and T. Tamizhmani are devoted to various aspects of discrete Painlevé equations. Integrability questions for P II are studied in a paper by J. J. Morales-Ruiz. A survey paper by J. Sauloy treats isomonodromy questions for complex, linear q-difference equations. Higher order Painlevé equations (and in particular Nuomi-Yamada systems) are discussed in the paper by Y. Takei. A study of Painlevé equations from the point of view of (infinite dimensional) Galois theory is written by H. Umemura. Asymptotic behaviour of solutions of linear, analytic q-difference equations is discussed in the paper by Ch. Zang.</p>
</div></div></div></div><div class="field field-name-field-review-reviewer field-type-text field-label-inline clearfix"><div class="field-label">Reviewer: </div><div class="field-items"><div class="field-item even">vs</div></div></div><span class="vocabulary field field-name-field-review-author field-type-taxonomy-term-reference field-label-inline clearfix"><h2 class="field-label">Author: </h2><ul class="vocabulary-list"><li class="vocabulary-links field-item even"><a href="/author/e-delabaere" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">e. delabaere</a></li><li class="vocabulary-links field-item odd"><a href="/author/m-loday-richaud" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">m. loday-richaud</a></li></ul></span><span class="vocabulary field field-name-field-review-publisher field-type-taxonomy-term-reference field-label-inline clearfix"><h2 class="field-label">Publisher: </h2><ul class="vocabulary-list"><li class="vocabulary-links field-item even"><a href="/publisher/soci%C3%A9t%C3%A9-math%C3%A9matique-de-france" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">société mathématique de france</a></li></ul></span><div class="field field-name-field-review-pub field-type-number-integer field-label-inline clearfix"><div class="field-label">Published: </div><div class="field-items"><div class="field-item even">2006</div></div></div><div class="field field-name-field-review-isbn field-type-text field-label-inline clearfix"><div class="field-label">ISBN: </div><div class="field-items"><div class="field-item even">978-2-85629-229-7 </div></div></div><div class="field field-name-field-review-price field-type-text field-label-inline clearfix"><div class="field-label">Price: </div><div class="field-items"><div class="field-item even">EUR 76</div></div></div><span class="vocabulary field field-name-field-review-msc field-type-taxonomy-term-reference field-label-hidden"><ul class="vocabulary-list"><li class="vocabulary-links field-item even"><a href="/msc/34-ordinary-differential-equations" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">34 Ordinary differential equations</a></li></ul></span>Sat, 28 May 2011 08:54:21 +0000Anonymous39187 at https://euro-math-soc.eu